

FINAL EXAMINATION

COURSE : QUANTITATIVE TECHNIQUES

COURSE CODE: TBM1074

DURATION : 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. This question paper consists of ELEVEN (11) questions.
- 2. Answer ALL questions in the Answer Booklet provided.
- 3. Please check to make sure that this examination pack consists of :
 - i) The Question Paper
 - ii) An Answer Booklet
 - iii) Appendix 1
- 4. Do not bring any material into the examination hall unless permission is given by the invigilator.
- 5. Please write your answer using a ball-point pen.
- 6. The use of electronic calculator is allowed.

MYKAD NO	:	
ID. NO.	:	
LECTURER	:	
SECTION	:	

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

The question paper consists of 3 printed pages

MAR/C/TBM1074

Short Answer

1. (4 points)

The second term and the fifth term of an arithmetic sequence are 12 and 30 respectively. Find the common difference and the first term.

2. (3 points)

Given a sequence: 2, 4, 8,..., 2048. Find the number of terms in this sequence.

3. (5 points)

Seven years ago, a sum of money was deposited in a savings account which gave a 12% simple interest. The accumulated amount today is RM 16,560.

- a. Find the value of the initial deposit. (2 points)
- b. How many years from today will it take the savings to amount to RM 21,960? (3 points)

4. (3 points)

On 4 June 2016, Fahmi saved RM 2000 in an account that offered simple interest rate of 10% per annum. Find the amount in his account on 1 December 2016 using Banker's Rule.

5. (7 points)

Maimunah deposited RM 7,700 in an account that offers k% compounded quarterly. After 5 years, the amount accumulated was RM 10,118.31

- a. Find the interest rate, k (4 points)
- b. Find the accumulated amount if she deposits the money for 7 years. (3 points)

6. (4 points)

Khadijah has two debts, RM 5,500 due in three years and another RM 8,700 due in seven years. If Khadijah wished to settle the debts in $4\frac{1}{2}$ years from now, find the single payment if money is worth 6.5% compounded semi-annually.

CONFIDENTIAL

7. (4 points)

A project requires an initial investment of RM 300 000 and is expected to generate the following net cash inflows.

Year	1	2	3	4
Cash Inflow	RM 120 000	RM 95 000	RM 88 000	RM 78 000

Find the net present value of the project if the discount rate is 12% per annum.

8. (6 points)

The cash price of a townhouse is RM 275,000. It can be purchased through an instalment plan by making a down payment of 5% followed by 300 equal monthly payments. The interest charged is 3.6% compounded monthly.

- a. Find the amount of down payment paid by the buyer. (1 point)
- b. Find the monthly payment. (5 points)

9. (4 points)

Fazira deposited RM 300 into an investment scheme every three months for 9 years and 9 months at 7.5% compounded quarterly. Find the total amount of her investment at the end of the investment period.

10. (10 points)

Find the derivative for

a.
$$y = 3x^3 - 4x^2 + 6x$$
 (2 points)

b.
$$y = (2x-3)(x^3+5)$$
 (4 points)

c.
$$y = \frac{6x}{4+3x}$$
 (4 points)

11. (10 points)

A furniture manufacturer find that the average cost function, x wooden chairs per week and the total revenue function are given as

$$AC(x) = \frac{800}{x} + 20$$

$$R(x) = 100x - 0.4x^2$$

respectively, Find

- a. the total revenue when 30 units are produced and sold. (2 points)
- b. the total cost function. (3 points)
- c. the total profit function. (3 points)
- d. the total profit when 100 units are sold. (2 points)

APPENDIX 1

$$1. T_n = a + (n-1)d$$

$$3. T_n = ar^{n-1}$$

$$S = P(1+rt)$$

$$7. S = P(1+i)^n$$

9.
$$PV = P_n \left[\frac{1}{(1+i)^n} \right]$$

11.
$$A = R \left[\frac{1 - (1+i)^{-n}}{i} \right]$$

13.
$$P(x) = R(x) - C(x)$$

15.
$$y = u.v$$
, $\frac{dy}{dx} = vu' + uv'$

17.
$$y = u^n , \frac{dy}{dx} = nu^{n-1} \times u'$$

2.
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

6.
$$I = \operatorname{Pr} t$$
, $S = P + I$

$$8. r = \left(1 + \frac{k}{m}\right)^m - 1$$

10.
$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$

$$12. \qquad R(x) = px$$

$$14. y = x^n , \frac{dy}{dx} = nx^{n-1}$$

16.
$$y = \frac{u}{v} , \frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$